Singular values of convex functions of matrices

نویسنده

  • Z. Ulukök Vadi Park Sit.‎, ‎Gulvatan Sok.‎, ‎Yazir‎, ‎Selçuklu‎, ‎42250‎, ‎Konya‎, ‎Turkey.
چکیده مقاله:

‎Let $A_{i},B_{i},X_{i},i=1,dots,m,$ be $n$-by-$n$ matrices such that $‎sum_{i=1}^{m}leftvert A_{i}rightvert ^{2}$ and $‎sum_{i=1}^{m}leftvert B_{i}rightvert ^{2}$  are nonzero matrices and each $X_{i}$ is‎ ‎positive semidefinite‎. ‎It is shown that if $f$ is a nonnegative increasing ‎convex function on $left[ 0,infty right) $ satisfying $fleft( 0right)‎ ‎=0 $‎, ‎then  $$‎2s_{j}left( fleft( frac{leftvert sum_{i=1}^{m}A_{i}^{ast‎ ‎ }X_{i}B_{i}rightvert }{sqrt{leftVert sum_{i=1}^{m}leftvert‎ ‎ A_{i}rightvert ^{2}rightVert leftVert sum_{i=1}^{m}leftvert‎ ‎ B_{i}rightvert ^{2}rightVert }}right) right) leq s_{j}left( oplus‎ ‎_{i=1}^{m}fleft( 2X_{i}right) right)‎$$ ‎for $j=1,ldots,n$‎. ‎Applications of our results are given.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weak log-majorization inequalities of singular values between normal matrices and their absolute values

‎This paper presents two main results that the singular values of the Hadamard product of normal matrices $A_i$ are weakly log-majorized by the singular values of the Hadamard product of $|A_{i}|$ and the singular values of the sum of normal matrices $A_i$ are weakly log-majorized by the singular values of the sum of $|A_{i}|$‎. ‎Some applications to these inequalities are also given‎. ‎In addi...

متن کامل

Accurate Singular Values of Bidiagonal Matrices

2 has nonzero entries only on its diagonal and first superdiagonal ) Compute orthogonal matrices P and Q such that Σ = P BQ is diagonal and nonnegat i 2 2 2 T 2 ive. The diagonal entries σ of Σ are the singular values of A . We will take them to be sorted in decreasing order: σ ≥ σ . The columns of Q= Q Q are the right singular vec i i + 1 1 2 t 1 2 ors, and the columns of P= P P are the left s...

متن کامل

On the singular values of random matrices

We present an approach that allows one to bound the largest and smallest singular values of an N × n random matrix with iid rows, distributed according to a measure on R that is supported in a relatively small ball and linear functionals are uniformly bounded in Lp for some p > 8, in a quantitative (non-asymptotic) fashion. Among the outcomes of this approach are optimal estimates of 1±c √ n/N ...

متن کامل

On structured singular values of reciprocal matrices

Computing the structured singular value (or ) is a bottleneck of the robustness analysis and synthesis of control systems. In this paper, it is shown that is identical to the maximum singular value for an important class of matrices called reciprocal, which re ects the intrinsic symmetry of physical world.

متن کامل

Accurately Counting Singular Values of Bidiagonal Matrices

We have developed algorithms to count singular values of a bidiagonalmatrix which are greater than a speci ed value This requires the transformation of the singular value problem to an equivalent symmetric eigenvalue problem The counting of sin gular values is paramount in the design of bisection and multisection type algorithms for computing singular values on serial and parallel machines The ...

متن کامل

Ela Singular Values of Tournament Matrices

Upper and lower bounds on both the largest and smallest singular values of a tournament matrix M of order n are obtained. For most values of n, the matrices M for which equality holds are characterized.

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 43  شماره 6

صفحات  2057- 2066

تاریخ انتشار 2017-11-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023